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How does a model arrive at its conclusions?

Understanding LLMs

INPUT Model OUTPUT

Mechanistic interpretability 
investigates neurons and circuits within model parameters 

&
Probing

investigates the information in the LLMs

correlates them with interpretable properties or functions



Interpreting LLMs: Look into weight matrices, activations and logits

Logit Lens Visualization

Do Llamas work in English? 

(Wendler et al., ACL 2024)https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens 

https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens


Mechanistic Interpretability

Credits to Dr. Max Müller-Eberstein
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What is probing?

Credits to Dr. Max Müller-Eberstein

Probing: Investigating the information encoded in the models and the model properties
● Is information correlated to a target property present in the model?

Traditional probing method: Use model internal representations to train a classifier (a.k.a. 
probe) to perform a target task related to the studied model property.



Probing via prompting

A new probing paradigm - probing via prompting (Li et al., NAACL 2022):
● reformating probing tasks into question–answer pairs and instruct the model to answer the 

questions with a prefix (prompting paradigm)

Interpretability 
Research

Understanding 
LLMs

…

Diagnostic 
probing 

(implicit)

Probing via 
Prompting 
(explicit) 

Probing 
Research

Based on model’s internal 
neural representations

Based on model’s outputs, 
behavioral test



Probing from Neuro- vs. Psycholinguistic Perspectives

Probing via Prompting (explicit) Diagnostic Probing (implicit) 

(He et al., LREC-COLING 2024a, 2024b)



Minimal Pair Probing

(He et al., 2024b)

Example of Minimal Pair

Minimal Pair:
Sentence pairs of minimally different sentences that contrast in 
linguistic acceptability and isolate specific phenomenon in syntax, 
morphology, or semantics.



Bias in Probing via Prompting (Nie et al., EMNLP Findings 2023)

Take a sentiment analysis probing task as an example:

How bias is observed

threshold probability

accuracy

Solution: Probability Calibration

Trainable penalty term

Calibrated prompting leads to more reliable probing results.

Results of calibrated prompting on multilingual datasets
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Probing Linguistic Structure (Nie et al., 2024a) 

CDPro: Sequence Decomposed Prompting for Sequence Labeling tasks

Current prompting methods struggle in handling 
sequence labeling probing tasks

● failing to measure how well LLMs 
understand linguistic structure 
knowledge

CDPro well addresses probing for sequence 
labeling tasks:

● Inspired by the human thinking process
● Decomposing an input sentence into 

discrete tokens
● Generating a series of prompts -- one 

prompt for one token.



Multilingual Prompting on POS tagging and NER tasks with CDPro 
(Nie et al., 2024a)  

Model NER
POS 

Tagging



Minimal Pair Probing for Linguistic Form and Meaning 
(He et al., 2024b)

Form: Grammatical phenomena

Meaning: Conceptual understanding

LLMs encode grammatical features 
better than conceptual features.

LLMs encode meaning after form.

Disparity of form and meaning 
competence across languages.



Multilingual Knowledge Probing and Editing 

Multilingual knowledge probing

Cross-lingual inconsistency of knowledge

(Qi et al., EMNLP 2023)

(Kassner et al., EACL 2021)



Knowledge Editing

Knowledge editing: efficiently modify LLMs’ 

behaviors within specific knowledge scope while 
preserving overall performance across various inputs.

   
Evaluation aspects of knowledge editing:
Reliability, Generality, Locality, Portability
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Who is the USA President? Trumps Biden.

Multilingual In-Context Knowledge Editing (MIKE): 
Prompting for Knowledge Editing (Nie et. al. 2024b)

Edited knowledge:

Wer ist der USA-Präsident?Target Test:

ICL Examples x8 (Details in the next slide)

mIKE Input
   ICL Examples x8

Who is the USA President? Biden 
Trumps Biden.Wer ist der USA-Präsident?

ICL demos:

Edited Know. (src. lang.):

Target Test (tgt. lang.):
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Multilingual In-Context KE (MIKE): 
Enhancing cross-lingual KE via Demonstrations (Nie et. al. 2024b)

ICL Examples

mIKE ICL Demos:

   

President of China is? Xi 
Wer ist Chinas Präsident? Xi

France is led by? Macron
Wer ist französischer Premierminister? 
Attal

…

Who is the USA President? Biden Trumps 
Biden.Wer ist der USA-Präsident?

ICL demos:

Edited Know.

Target Test:

In-Context Learning: 
What should the model learn from context (demos)?

- Learn how to solve the task
- Demo type should be as close to the task type as possible.
- Tests on Reliability/Generality/Locality/Portability are diff. task types

-> Generality

-> Locality

-> …
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Thank you for your attention!
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Papers covered

Two types of probing methods for LLMs:

● Implicit (using internal representations, Neural probing)
● External (prompting)

Neural- vs. Psycholinguistics perspectives:

1. Probing bias (prompting): Unleashing the Multilingual Encoder Potential: Boosting Zero-Shot Performance via 
Probability Calibration 

2. Minimal pair probing: Decoding Probing: Revealing Internal Linguistic Structures in Neural Language Models Using 
Minimal Pairs

3. Neural- vs. Pyscholinguistics perspectives (linguistic form and meaning): Large Language Models as 
Neurolinguistic Subjects: Identifying Internal Representations for Form and Meaning

4. Prompting for linguistic structure (decomposed prompting): Decomposed Prompting: Unveiling Multilingual 
Linguistic Structure Knowledge in English-Centric Large Language Models 

5. Prompting for knowledge probing and editing: BMIKE-53: Investigating Cross-Lingual Knowledge Editing with 
In-Context Learning 
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