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Linguistic Annotation

Lemmatization, POS Tagging, Morphosyntactic annotation, ...

Figure: An example of linguistic annotation in the CoNLL format (Ishola, 2019).
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Linguistic Annotation

Constituency Parsing

Sentence: That cold, empty sky was full of fire and light.

Figure: An example of constituency parse (Jurafsky and Martin).
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Linguistic annotation for historical languages

Why we need linguistically annotated corpora of historical
languages?

- form the foundation for linguistic analysis (language change, contact
and variation, linguistic evolution of morphology, syntax, etc.).

- serve as a building block for NLP applications.

- enrich interdisciplinary cultural, literature and historical studies.
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Historical German Language Resources

Corpora annotated on the token level

- German Reference Corpus (Referenzkorpus)1

Syntactically annotated corpora

Id. Name Languages Style Size

DDB2 German Diachronic Treebank OHG, MHG, ENHG Tiger 8,580

ReF3 Reference Corpus of Early New High German: Treebank FNHD Tiger ∼500,000

IPCHG4 Indiana Parsed Corpus of Historical (High) German OHG, MHG, ENHG PTB ∼10,000

CHLG5 Corpus of Historical Low German MLG, OLG PTB ∼200,000
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Automatic annotation for historical languages

Why we want automatic annotation for historical languages?

Difficulties in constructing parsed corpora for historical languages:

- Scarcity of digital text resources,
- High demand of linguistic expertise,
- Large manual effort.

→ Solution: Train automatic linguistic structure annotation and analysis
systems.
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Automatic annotation in corpus construction

Example of automatic annotation applied to
corpus construction

Construction of PCENHG Corpus:

an early new high German (ENHG)
corpus released by the IPCHG (Indiana
Parsed Corpus of Historical High
German) team (Sapp et al., 2023).
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Two Research Cases

Automatic Linguistic Annotation for Historical German Languages:

Case 1: Automatic annotation of medieval lyrics with POS tags and
lemmas.

Case 2: Automatic constituency parsing for historical German.
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Automatic Annotation with POS Tag and Lemma

Credits to PD. Helmut Schmid.
Errors and defects are solely my responsibility.
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Task: Annotation with POS Tag and Lemma

Token POS Tag Lemma

do AVD dô
begagenda VVFIN.Ind.Past.Sg.3 be-gègenen
imo PPER.Masc.Dat.Sg.3 ër
min DPOSA.Masc.Nom.Sg.* m̂ın
trohtin NA.Masc.Nom.Sg.st truht̂ın
mit APPR mit
inero DPOSA.Fem.Dat.Sg.st ŝın
arngrihte NA.Fem.Dat.Sg.st êre-grëhte
. $ .

Example sentence from the Referenzkorpus Mittelhochdeutsch6.
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Overview

Word Representations

Construction of the POS Tagger

Construction of the Lemmatizer

Application to the Corpus Medieval Lyrics
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Word Representations

The POS tagger is based on a neural network.

Neural networks can only process numbers.

So, each word should be represented as a number vector:
(-0.7, 1.5, 12.8, -5.5, 0.2, ..., 3.5)

These representations are part of the neural network and are trained
with it.

Similar words have similar representations.
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Word Embeddings

Brussels

London

Paris

Belgium

UK

France

orange

blue

pink

house

building

small

tiny

walk

run

one

two

three
five

The number vectors correspond to points in the n-dimensional space
(where n is the length of the number vector).

The representations of semantically similar words are close to each other.
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Construction of the POS Tagger

The quick brown ... dog

DT JJ JJ NN

bi−RNN

embeddings

The POS tagger is trained on manually annotated data.
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Lemmatizer

b a b i e s bab<s>

b a b

Σ

encoder decoder

attention

?

Input: Character sequence of a word + POS tag

Output: Character sequence of the lemma

The encoder provides a representation in the context for each character.

The decoder generates the lemma character one by one..

The attention module provides a summary of the encoder representations,
which depends on the current status of the decoder.
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Annotation of the Corpus Medieval Lyrics

Tagger and lemmatizer were trained on the ReM-Korpus.

ReM was annotated with the POS tag set HiTS, which is based on the
STTS (a tag set for modern German).

The corpus Medieval Lyrics was annotated by the trained system.

Annotations were manually checked by experts on a short text of 138 words.

114 of the 138 words were annotated with the correct POS tag and the
correct morphosyntactic features (number, gender, case)
⇒ 83% accuracy
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mod. German MHG POS Tag Lemma Correction

Nachtigall Nahtegal ADJA.Pos.Neut.Nom.Sg.* nahtegalw Nomen
gutes guot ADJA.Pos.Neut.Nom.Sg.* guot
Vögelein vogellin NA.Neut.Nom.Sg.st vogell̂ın

meiner miner DPOSA.Fem.Dat.Sg.st m̂ın
Frau frovwen NA.Fem.Gen.Sg.st vrouwe Dativ
sollst solt VMFIN.Ind.Pres.Sg.2 soln
Du du PPER.*.Nom.Sg.2 dû
singen singen VVINF singen
in in APPR in
ihr ir DPOSA ir
Ohr ore NA.Neut.Akk.Sg.wk ôre
dorthin dar AVD dar

weil sit KOUS ŝıd
sie si PPER.Fem.Nom.Sg.3 ër
hat hat VAFIN.Ind.Pres.Sg.3 haben Vollverb
das daz DDART.Neut.Akk.Sg.* dër
Herz herze NA.Neut.Akk.Sg.wk hërze
mein min DPOSN.Neut.Akk.Sg.wk m̂ın
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A Demo for ENHG

A demo system of annotation and parsing for Early New High German
(ENHG):

Figure: https://huggingface.co/spaces/nielklug/enhg-parsing
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Middle High German (MHG)

Our work focused on the constituency parsing of Middle High German
(MHG):

a historical stage of the German language that was spoken between
1050 and 1350.

the linguistic predecessor of Modern German (MG).
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Delexicalization Parsing for Middle High German

Motivation of the Delexicalization Method:

The continuity in the process of

language evolution gives rise to

linguistic similarities between MG

and MHG.

Similar sentence structure
Similar word order

Rich resources of MG texts with

syntactic annotations.

Tiger Corpus (Smith, 2003)
Er       liest      auch

 (He     reads     too)

Delexicalization

PPER VVFIN ADV

POS Embebdding

Encoder

Decoder

S

NP VP

PPER VVFIN ADV

Delexicalized 
Input

Delexicalized Model

Output

Training

diu        ist           ein  muoter
(This       is              a    mother)

MHGTagger

DDS VVFIN DIART NA

POS Embebdding

Encoder

Decoder

S

NP VP

PRON VVFIN NP

Delexicalized 
Input

Delexicalized Model

Output

Inference
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transfer

MG MHG
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TagMapper
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Delexicalization Parsing System for MHG

The delexicalization parsing system for MHG comprises three modules:

POS Tagger
Annotates a sequence of MHG tokens with POS and morphological
tags.
Trained on the ReM corpus using RNNTagger (Schmid, 2019).

Tag Mapper

Mapping tags from the HiTS tag set
(used for ReM) to STTS tag set (used
for MG treebanks).

MHD-Tag MD-Tag
CARDD CARD
DDART ART

NA NN

Delexicalized Parser
Based on the Berkeley Neural Parser (Benepar) (Kitaev and Klein,
2018)
Trained on the Tiger Treebank (50,474 MG parse trees)

Nie (CIS, LMU) Automatic Annotation for Historical German June 20 25 / 41



Delexicalization Parsing System for MHG

The delexicalization parsing system for MHG comprises three modules:

POS Tagger
Annotates a sequence of MHG tokens with POS and morphological
tags.
Trained on the ReM corpus using RNNTagger (Schmid, 2019).

Tag Mapper

Mapping tags from the HiTS tag set
(used for ReM) to STTS tag set (used
for MG treebanks).

MHD-Tag MD-Tag
CARDD CARD
DDART ART

NA NN

Delexicalized Parser
Based on the Berkeley Neural Parser (Benepar) (Kitaev and Klein,
2018)
Trained on the Tiger Treebank (50,474 MG parse trees)

Nie (CIS, LMU) Automatic Annotation for Historical German June 20 25 / 41



Delexicalization Parsing System for MHG

The delexicalization parsing system for MHG comprises three modules:

POS Tagger
Annotates a sequence of MHG tokens with POS and morphological
tags.
Trained on the ReM corpus using RNNTagger (Schmid, 2019).

Tag Mapper

Mapping tags from the HiTS tag set
(used for ReM) to STTS tag set (used
for MG treebanks).

MHD-Tag MD-Tag
CARDD CARD
DDART ART

NA NN

Delexicalized Parser
Based on the Berkeley Neural Parser (Benepar) (Kitaev and Klein,
2018)
Trained on the Tiger Treebank (50,474 MG parse trees)

Nie (CIS, LMU) Automatic Annotation for Historical German June 20 25 / 41



Delexicalization Parsing System for MHG
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Figure: Overview of the cross-lingual delexicalized parsing system for MHG
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Experimental Setup

Dataset

Training set: Tiger Treebank (MG)

Test set: DDB (MHG)

Baselines

Vanilla Benepar: performing a vanilla zero-shot cross-lingual
transfer, training a Benepar model directly on MG treebanks without
the delexicalization.

Tetra-Tagging with PLMs: a technique reducing constituency
parsing to sequence labeling (Kitaev and Klein, 2020)

gBERT: Tetra-Tagging with the German BERT model (Chan et al.,
2020)
mBERT: Tetra-Tagging with the multilingual BERT model (Devlin
et al., 2019)
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Automatic Evaluation Metrics for Constituency Parsing

Calculated by comparing the constituents of model-generated parse tree and the gold
standard parse tree.

E.g.: The cat sat on the mat
Gold standard parse tree:
(S (NP (DT The) (NN cat)) 
(VP (VBD sat) (PP (IN on) 
(NP (DT the) (NN mat)))))

Extracted constituents:
•(S, 0, 6)
•(NP, 0, 1)
•(VP, 2, 6)
•(PP, 3, 6)
•(NP, 4, 5)

Predicted parse tree:
(S (NP (DT The) (NN cat)) 
(VP (VBD sat) (VP (IN on) 
(NP (DT the) (NN mat)))))

Extracted Constituents:
•(S, 0, 6)
•(NP, 0, 1)
•(VP, 2, 6)
•(VP, 3, 6)
•(NP, 4, 5)

Precision =
#Correct Constituents

#Total Predicted Constituents
=

4

5
= 0.8

Recall =
#Correct Constituents

#Total Gold Standard Constituents
=

4

5
= 0.8

F1-Score = 2 ·
Precision · Recall
Precision + Recall

(harmonic mean of precision and recall)
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Main results

Recall Precision FScore CM
MG MHG MG MHG MG MHG MG MHG

Baselines
Vanilla Benepar 84.18 34.41 87.57 44.40 85.84 38.77 45.80 0.00
Tetra-gBERT 86.31 23.20 88.19 29.53 87.24 25.98 51.70 3.12
Tetra-mBERT 60.68 19.69 65.61 23.25 63.15 21.32 21.35 0.00

Our proposed method
Dexparser 81.39 64.72 84.89 70.19 83.10 67.34 39.03 12.50

Table: Parsing performance of different cross-lingual transfer methods. CM refers
to “complete match” The best value of each column is indicated in bold.

Dexparser demonstrates substantial advantages in parsing MHG compared
to other baselines.

Dexparser also achieves comparable results on MG.
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Ablation Study

Recall Precision FScore CM
Delexicalized parser using gold tags 66.18 71.17 68.59 14.58
- using predicted tags 64.72 70.19 67.34 12.50

- without mapping 59.16 68.82 63.63 7.29
- without morphological information 48.66 65.38 55.8 9.28

Table: The MHG parsing results with delexicalized parser in the ablation study.

Quality of POS annotation, tag set mapping and annotation of
morphological information collectively contribute to the performance of
the delexicalization parser on MHG.
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A Demo for MHG

A demo system of annotation and parsing for Middle High German (MHG):

Figure: https://huggingface.co/spaces/nielklug/mhg-parsing
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Summary

1 Automatic linguistic annotation is helpful in building corpora for
historical language studies.

2 Research Case 1: Character-based RNNs for POS tagging and
lemmatization of medieval lyrics

3 Research Case 2: Delexicalized parser for middle high German.

Nie (CIS, LMU) Automatic Annotation for Historical German June 20 33 / 41



Thanks for your attention!
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Problem of unknown words

Challenge: Strong graphmatic variation in historical German
tuon, dun, doyn, thuon, tuen, tvon, tûon, tu

o
n, tv

o
n, to

v
n

Supposing we saw the word tuon in the training data, but did not see
the word tvon.

Which representation should we use for tvon?

Because u is usually replaced by v, tuon and tvon should have similar
representations.

⇒ Computing the word representations from the character sequence
(instead of word sequence).
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Character-based word representations

Each character is represented by a number
vector.

The vector sequence is processed by a
bidirectional RNN.

The last representations of each direction
are collected.

⇒ character-based word representations i kuq ...
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The Whole Net

t h e od giu kcq ...

DT JJ NN
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Advantages

The character-based neural network

learns regular writing variations
e.g. u ↔ v, uo → u

o
etc.

generalizes from words to their possible writing variations
tuon → thv

o
n

provides good word representations for unseen words
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